Architecting More than Moore - Wireless Plasticity for Massive Heterogeneous Computer Architectures (WiPLASH)
(source: wiplash.eu)
This project is funded by European Commission through its FET OPEN program.
The main design principles in computer architecture have shifted from a monolithic scaling-driven approach towards an emergence of heterogeneous architectures that tightly co-integrate multiple specialized computing and memory units. This is motivated by the urgent need of very high parallelism and by energy constraints. Heterogeneous hardware specialization requires interconnection mechanisms that integrate the architecture. State-of-the-art approaches are 3D stacking and 2D architectures complemented with a Network-on-Chip (NoC) to interconnect the components. However, such interconnects are fundamentally monolithic and rigid, and are unable to provide the efficiency and architectural flexibility required by current and future key ICT applications. The main challenge is to introduce diversification and specialization in heterogeneous processor architectures while ensuring their generality and scalability.
In order to achieve this, the WiPLASH project aims to pioneer an on-chip wireless communication plane able to provide architectural plasticity, reconfigurability and adaptation to the application requirements with near-ASIC efficiency but without loss of generality. For this, the WiPLASH consortium will provide solid experimental foundations of the key enablers of on-chip wireless communication at the functional unit level as well as their technological and architectural integration. The main goals are to: (i) Prototype a miniaturized and tunable graphene antenna in the terahertz band, (ii) Co-integrate graphene RF components with submillimeter-wave transceivers, and (iii) demonstrate low-power reconfigurable wireless chip-scale networks.
The culminating goal is to demonstrate that the wireless plane offers the plasticity required by future computing platforms by improving at least one key application (mainly biologically-plausible deep learning architectures) by 10× in terms of execution speed and energy-delay product over a state-of-the-art baseline.
VISORSURF: A Hardware Platform for Software-driven Functional Metasurface
(more info at: N3Cat, Visorsurf.eu)
This project is funded by European Commission through its FET OPEN program. Media coverage:
Metasurfaces, thin film planar, artificial structures, have recently enabled the realization of novel electromagnetic and optical components with engineered and even unnatural functionalities. These include electromagnetic invisibility of objects (cloaking), total radiation absorption, filtering and steering of light and sound, as well as ultra-efficient, miniaturized antennas for sensors and implantable communication devices. Nonetheless, metasurfaces are presently non-adaptive and non-reusable, restricting their applicability to a single functionality per structure (e.g., steering light towards a fixed direction) and to static structures only.
Moreover, designing a metasurface remains a task for specialized researchers, limiting their accessibility from the broad engineering field. VISORSURF proposes a hardware platform-the HyperSurface-that can host metasurface functionalities described in software. The HyperSurface essentially merges existing metasurfaces with nanonetworks, acting as a reconfigurable (globally, locally, upon request or depending on the environment) metasurface, whose properties can be changed via a software interface. This control is achieved by a network of miniaturized controllers, incorporated into the structure of the metasurface. The controllers receive programmatic directives and perform simple alterations on the metasur-face structure, adjusting its electromagnetic behavior. The required end-functionality is described in well-defined, reusable software modules, adding the potential for hosting multiple functionalities concurrently and adaptively. VISORSURF will study in depth the novel and unexplored theoretical capabilities of the HyperSurface concept.
Towards Ubiquitous GRAphene based RF COmmunications – demonstrating and understanding graphene based plasmonic THz antenna potential and limitations (TUGRACO)
(more info at: N3Cat)
This project is funded by the GRAPHENE Flagship European Project.
Nanotechnology is increasingly providing a plethora of new tools to design and manufacture miniaturized devices such as ubiquitous sensors, wearable electronics or pervasive computing systems. Such devices require wireless communications for information sharing and coordination. Unfortunately, reducing the size (and concomitantly cost) of such devices is severely restricted by the dimensions of metallic antennas. Graphene offers a radical alternative to downscale antennas by orders of magnitude thanks to its special dispersion relation and its ability to support surface-plasmon polaritons (SPP) in the terahertz frequency band. Indeed, a graphene RF plasmonic micro-antenna with lateral dimensions of a few micrometers is predicted to resonate in the terahertz band (0.3-10 THz) at a frequency up to two orders of magnitude lower and with higher radiation efficiency with respect to metallic counterparts. In consequence, graphene micro-antennas provide a huge integration potential for future miniaturized wireless systems and represents an enabling technology for the future dominant ICT applications envisioned by e.g. Internet of Things.
Graphene-enabled Wireless Communications (GWC)
(more info at: N3Cat)
This project is funded by SAMSUNG under its Global Research Outreach (GRO) program, as well as by INTEL through its Doctoral Student Honor Programme. Media Coverage:
Graphene, a flat monoatomic layer of carbon atoms tightly packed in a two-dimensional honeycomb lattice, has recently attracted the attention of the research community due to its novel mechanical, thermal, chemical, electronic and optical properties. Since its first isolation by the Nobel laureates Andre Geim and Konstantin Novoselov back in 2004, graphene has given rise to a plethora of potential applications in diverse fields, attracting, as a result, multimillion dollar research funding.
A remarkably promising application of graphene is that of Graphene-enabled Wireless Communications (GWC). GWC advocate for the use of graphene-based plasmonic antennas -graphennas, see Fig. 1- whose plasmonic effects allow them to radiate EM waves in the terahertz band (0.1 – 10 THz). Moreover, preliminary results sustain that this frequency band is up to two orders of magnitude below the optical frequencies at which metallic antennas of the same size resonate, thereby enhancing the transmission range of graphene-based antennas and lowering the requirements on the corresponding transceivers. In short, graphene enables the implementation of nano-antennas just a few micrometers in size that are not doable with traditional metallic materials.
Thanks to both the reduced size and unique radiation capabilities of graphennas, GWC may represent a breakthrough in the ultra-short range communications research area. In this project we will study the application of GWC within the scenario of off-chip communication, which includes communication between different chips of a given device, e.g. a cell phone. The advantages of the resulting Off-Chip Graphene-based Wireless Communication are manifold but can be summarized in two points. On the one hand, the potential of GWC to radiate in the terahertz band provides a huge transmission bandwidth, allowing not only the transmission of information at extremely high speeds but also the design of ultra-low-power and low-complexity schemes. On the other hand, the reduced size of such antennas results in a smaller area overhead than with conventional metallic antennas, factor that may be critical in area constrained scenarios. Moreover, improving the directivity values by means of graphene-based antenna arrays could be possible due to the aforementioned reduced size.
Design optimized for Chrome. By Sergi Abadal